
Расчёт "Г"-образного компенсатора при установке цокольного газового ввода.

Наименование объекта

1. Расчётные исходные данные.

Наименование параметра и обозначение						
						Заданное перемещение компенсатора
Заданный вылет компенсатора	L _κ	CM	178			
Диаметр трубы стального компенсатора	D _{ct}	MM	33,5			
Толщина стенки трубы стального компенсатора	S _{CT}	MM	3,2			
Модуль упругости стальных труб	E _o	МПа	2,1*10 ⁵			
Марка стали стальных труб (указывается в спецификации к проекту)	-	-	Ст3пс			
Предел текучести материала труб (по паспорту на трубы или по СП 42-102-2004)	$\sigma_{\scriptscriptstyleT}$	МПа	225			
Коэффициент условий работы компенсатора	$\gamma_{\scriptscriptstyle \Gamma}$	-	0,9			
Диаметр подземной части цокольного ввода (полиэтиленовый газопровод)	D _{nə}	MM	63			
Стандартный размерный коэффициент полиэтиленовых труб	SDR	-	11			
Толщина стенки полиэтиленового газопровода	S _{nэ}	MM	5,8			
Материал полиэтиленовых труб -						
Допустимое максимальное продольное напряжение материала полиэтиленовых труб	$[\sigma^{\scriptscriptstyleH}_{\;np}]$	МПа	8,1			
Разрешённое (максимальное) давление в газопроводе						
Напряжения в стенке ПЭ трубы при максимальном температурном перепаде (40°C) $[\sigma_{\Delta t.np}]$						
Коэффициент Пуассона μ						

сь и дата			N.	,						
Подпись и				000-2016	6 -Р.КГ					
Инв. № подл.					Стадия	Лист	Листов			
				Расчёт "Г"-образного компенсатора при	-	1	2			
	Выполнил		11.16	установке цокольного газового ввода.						
	Проверил		11.16							

2. Расчет Г-образного компенсатора.

2.1. Определение продольных напряжений полиэтиленовых труб от внутреннего давления, (σ_{t}):

$$\sigma_t = P_{max} * (D_{na} - s_{na}) / 2 * s_{na} = 0,005 * (63 - 5,8) / 2 * 5,8 = 0,02 M \Pi a$$

2.2. Расчёт допустимого напряжения в стенке полиэтиленовой трубы, $({f \sigma}_{\!\scriptscriptstyle \Delta L})$:

$$\sigma_{\Delta L} = [\sigma^{H}_{np}] - \mu^* \sigma_t - \sigma_{\Delta t, np} = 8.1 - 0.43^* 0.02 - 2.93 = 5.16 M \Pi a$$

2.3. Расчетные продольные напряжения в компенсаторе, ($\sigma_{\text{комп}}$):

$$\sigma_{\text{KOMD}} = 1.5 * E_0 * D_{\text{CT}} * 10^{-1} * \Delta L / L_{\text{K}}^2 = 1.5 * 2.1 * 10^5 * 33.5 * 10^{-1} * 6.0 / 178.0^2 = 199.8 MNa$$

2.4. Допустимые продольные напряжения в компенсаторе , (σ_{aon}):

$$σ_{\text{доп}} = [σ_t] * γ_r = 225 * 0.9 = 202,5 MΠa$$

2.5. Расчёт площади сечения полиэтиленовой трубы, (А)

$$A = \pi (D_{n_3} - s_{n_3}) * s_{n_3} * 10^{-2} = 3.14 (63 - 5.8) * 5.8 * 10^{-2} = 10.42 \text{ cm}^2$$

2.6. Расчёт момента сопротивления стальной трубы , (W)

$$W = \pi \left(D_{cr}^{ 4} - \left(D_{cr}^{ 2} * s_{cr} \right)^{4} / \left(32 * D_{cr} \right) * 10^{-3} = 3.14 * \left(33.5 \right.^{4} - \left(33.5 \right.^{-2} * 3.2 \right.^{4} / \left(32 * 33.5 \right.^{-1} \right) \right) + 10^{-3} = 2.11 \text{ cm}^{3} + 10^{-3} = 2.11 \text{ cm}^{3$$

2.7. Расчёт реакции отпора плеча компенсатора , (F_v)

$$F_k = 100 * W * \sigma_{KOMD} / L_K = 100 * 2,11 * 199,8 / 178 = 236,8 H$$

$$A_{min} = F_k * 10^{-2} / [\sigma_{\Delta L}] = 236.8 * 10^{-2} / 5.16 = 0.46 \text{ cm}^2$$

Проверка условий							
σ _{комп} ≤	«	$\sigma_{\!\scriptscriptstyle extsf{DOR}}$	$\stackrel{\textstyle \frown}{}$	199,8	≤ 202,5	\Rightarrow	Условие выполняется
A _{min} \$	<	А		0,46	≤ 10,42		Условие выполняется

Расчёт определяет необходимую длину плеча компенсатора типа "Г" и составлен на основании методики изложенной Пособием по проектированию, строительству и эксплуатации "Газопроводы из полимерных материалов" раздел 3.5 "Устройство полиэтиленовых газопроводов-вводов". (А.Л Шурайц, В.Ю. Каргин, Ю.Н. Вольнов, Саратов, Издательство "Журнал "Волга-ХХІ век",2007). Согласно данных СП 22.13330.2011 "Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83" нормативные значения просадок зданий могут составлять от 5 до 15 см. Расчёт компенсаторов на максимальную величину в 15 см нецелесообразен, так как просадки на максимальную величину происходят в первые годы после их строительства, когда прочностные свойства полиэтилена ещё не претерпели изменений в сторону снижения. Расчёт выполнен исходя из характеристик полиэтилена после 50 лет эксплуатации, когда просадки здания прекратились и могут возобновиться из-за случайных факторов. Для новых зданий величина просадки принимается не менее 6 см, а в случае большей величины считать аварийным случаем и устранять наращиванием стального участка.

Лист